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Abstract

Research on AI-CNT composites is in strong demand due to their high specific properties,
and their potential applications in many advanced areas like in automotive and aerospace

industries.

In the current study, tensile and fracture properties of aluminum-multiwall carbon
nanotube composites (AI-CNT) were investigated. A 99.7% pure AIPOCO® aluminum powder
having an average particle size of 75 microns, in addition to 70-90% pure Elicarb® multi-walled
carbon nanotubes having 10-12 nm average diameter were utilized in the synthesis of single
and dual matrix multiwall carbon nanotube reinforced aluminum composites. Single matrix Al-
CNT composite powders with 1, 2, 2.5, 5 wt.% CNT fraction were synthesized using the high
energy ball milling (HEBM) of Al and CNT powders for 1 hour at 400 rpm. Dual matrix AlI-CNT
composites of 1, and 2.5 wt.% CNT loadings were synthesized from 1:1 mixtures of single
matrix Al-2 and 5 wt.% CNT composite powders, respectively, and unmilled aluminum

powders using HEBM for 1 hour at 400 rpm.

Composite powders of different compositions were consolidated using conventional
powder metallurgy processes; this included cold compaction, hot compaction, sintering, and
hot extrusion processes in order to obtain high density compacts of the AI-CNT composites
that are appropriate for different mechanical testing procedures. Several mechanical testing
and characterization methods were applied to closely explore the mechanical properties and
structural features of the AI-CNT composites. This included mechanical tension, and Elastic
plane-strain fracture toughness tests as well as scanning electron microscopy, x-ray

diffraction, Nanoindentation, and Raman spectroscopy.

Improvements in composite properties by tailoring the synthesis parameters as well as
structural related information revealed by different testing and characterization methods are
reported later in this study. It was concluded that the addition of CNT to the Aluminum matrix
had a positive impact on the material strength with a corresponding loss in ductility. The study
also showed that the dual matrix principle could positively retain some of the material
ductility when employing the right milling conditions and mixing ratios. On the other hand, no

significant influences of CNT on the elastic plane strain fracture toughness of aluminum was
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observed. Instead, transition of the material fracture behavior to a less ductile manner was

observed.
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Chapter One

General introduction, objectives, and scope of the thesis

Composite materials are receiving strong interest due to their outstanding combination
of properties. They are engineered to serve specific applications that require superior
properties to those of conventional materials. A composite material is a mixture of two or
more phases that are chemically distinguishable and separated by a distinctive interface
providing properties that individual constituents cannot achieve. Generations of composites
have been developed over the past decades. Understanding of the structure-property
relationships is very important. Different types and geometries of reinforcements are utilized

to tailor the composite properties to suit diverse applications.

The discovery of CNTs has shifted the materials universe to higher performance levels.
Their outstanding set of mechanical, electrical, thermal, chemical, and biological properties in
addition to the high controllability of these properties have tremendous impacts in different
fields of applications. Structural composites, super conductors, electron field emitters,
artificial tissue engineering, electronics packaging, aerospace industries, bio-sensors, DNA
sequencing, atomic field microscopy, hydrogen storage, and many more areas are greatly
benefiting from the exceptional properties of CNTs. Further information about the fabrication

methods and structural characteristics of CNTs are available in Appendix A.

Structural composites utilizing CNT reinforcements have been intensively investigated.
Although not as heavily studied as CNT-reinforced polymer composites, CNT-reinforced
aluminum composites are receiving increasing attention due to their light weight, high specific
properties, ease of processing and versatility of applications. Several processing techniques

are being developed to overcome the processing difficulties of AI-CNT composites.

Powder metallurgy is a powder fabrication method involving consolidation of metallic
particles using the appropriate pressure and temperature combinations. The technique is very
useful in producing nonporous products having properties equivalent to the fully dense
original material. It has high potential of producing net shape and near-net shape components
with high densities. Several powder processes are employing the powder metallurgy
technique such as: die pressing, hot extrusion, spark plasma sintering (SPS), spark plasma

extrusion (SPE), high pressure torsion (HPT), and hot isostatic pressing (HIP). More detailed
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information about powder metallurgy and its related processing techniques are available in

Appendix A.

Mechanical alloying (MA) as defined by (Suryanarayana, 2001) is a solid state powder
synthesis technique involving continuous welding, fracturing, and re-welding of powder
particles in a high energy ball mill. Considering the variety of methods and equipment
designed to serve the MA concept, the process has a huge potential to synthesize a large
variety of alloys and compounds starting from blended elemental powders. Non equilibrium
compositions could be synthesized by using the right constituent proportions. High fractions
of reinforcements could be used in composite synthesis. The MA technique has been reported
to effectively disperse CNTs within the aluminum matrix. The MA technique also provides a
severe refinement effect that makes it possible to synthesize nano-structured materials
(Suryanarayana, 2001). More details about the mechanical alloying technique are given in

Appendix A.

Recent investigations on AI-CNT composites have reported improvements in the
composite mechanical properties in terms of strength. However, this is typically associated
with a loss in material ductility that poses a critical limitation on their applications. The current
study is a continuation of previous work conducted within the same research team on the
synthesis and mechanical properties of CNT-reinforced aluminum composites. This study aims
to provide improved processing procedures and parameters that maximize the advantage
from the outstanding properties of CNTs. The current work focuses on the successful
dispersion of CNTs within the aluminum matrix using the mechanical milling process. Tackling

the loss of ductility issue is attempted and the dual matrix structural design is investigated.

The current study has three main objectives:

1. Provide a processing roadmap for synthesizing AI-CNT composites of enhanced
mechanical and structural properties using the mechanical milling technique. This
is achieved by examining the effect of an improved set of processing conditions
for the synthesis of AI-CNT composites on the resulting structural and mechanical

properties of the composite.
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2. Investigate the effectiveness of the dual matrix composite structural design on
retaining some of the AI-CNT composite ductility while as much as possible

keeping its high strength, e.g. to reach optimum strength and ductility tradeoffs.

3. Investigate the potential of CNTs as a toughening material for aluminum based

composites processed by the mechanical milling process.

Chapter two of this thesis "Literature review" covers the main literature about synthesis
and characterization of AI-CNT composites. This is presented in terms of conventional as well
as more elaborate synthesis techniques and the achieved enhancements in mechanical
properties of the composites. An analysis of the AI-CNT strengthening mechanisms and
interfacial interactions is also presented in Chapter Two. Chapter Three "Materials and
Experimental procedure" covers the details of the processing, characterization, and testing
techniques involved in the current investigation. Chapter Four of this thesis "Results and
discussions" presents the results obtained from the current investigation for both single and
dual matrix AI-CNT composite. This includes their mechanical properties as well as the outputs
of different characterization techniques involved. Chapter Six "Conclusions" presents the
conclusions drawn from the current study of AI-CNT composites followed by
recommendations for future progress in that field. Additional background information
pertaining to the mechanical milling process, CNTs, fracture toughness measurement and all

characterization techniques utilized in the current study are presented in Appendix A.

General introduction, objectives, and scope of the thesis || 18

www.manaraa.com



Chapter Two

Literature review

2.1. Synthesis of Al- CNT composites

Since the discovery of CNTs in 1991, a window to new technological areas has been
opened. CNTs exhibited a set of extraordinary mechanical, electrical, thermal, optical, and
catalytic properties which created their high potential of application in many fields of science
and technology. These outstanding properties in fact are a reflection of the near-perfect nano-
sized tubular structure of CNTs. For instance CNTs exhibit very high Young's modulus of 600
to 1100 GPa and very high tensile strength of 35 to 110 GPa which have centered them in the

focus of material scientists.(Bakshi and Agarwal, 2011)

One of the major applications of CNTs was in the reinforcement of composite materials
which led to extensions in the conventional performance limits of materials.(Cha et al., 2005)
Researchers have realized the outstanding advantage of utilizing CNTs in reinforcing polymeric
materials, which have then extended to metallic and ceramic materials. It was then that when
principal investigators became concerned with the development of suitable processing
methods that would result in a uniform distribution of CNTs in different metallic or ceramic
matrices. The Superior mechanical properties of CNTs, in terms of strength and stiffness, as
well as their extraordinary nano-scale tubular structure have stimulated their use as
reinforcements in structural materials. Aluminum gathered special attention as a possible
matrix material due to its light weight (e.g. high specific properties) and high process-ability.
Several processing techniques were investigated ranging from conventional melt processing
and powder metallurgy methods to advanced molecular level mixing techniques. Several
powder metallurgy consolidation methods were investigated starting from conventional
powder compaction, extrusion, and rolling to the most advanced spark plasma sintering (SPS),

spark plasma extrusion (SPE), and high pressure torsion (HPT) processes.

Several published articles have highlighted the critical issues that limit the advantage
from the superior mechanical properties of CNTs in composites.(Agarwal et al., 2011, Esawi
and Morsi, 2007, Esawi et al., 2009, Esawi et al., 2010, Esawi et al., 2011) The first challenge is
the deagglomeration and uniform distribution of individual CNTs within the matrix material

while retaining their near-perfect structure. The second challenge is concerned with the
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orientation of CNTs within the composite structure and their effect on the resulting
mechanical properties. The third is concerned with the interfacial bonding between CNTs and
the matrix material.(Bakshi and Agarwal, 2011) Poor interfacial bonding between CNTs and

matrix material has reported.(Choi et al., 2009)

2.1.1. Effect of CNT morphology and diameter on the synthesis and
properties of AI-CNT composites
(Esawi et al., 2011) have studied the effect of CNT morphology and diameter on the

processing and properties of AI-CNT composites. The authors demonstrated a comparison
between the influences of two different morphologies and diameters of CNTs on the
processing and properties of AI-CNT composites. The authors employed large diameter CNTs
with straight, and stiff morphologies against 3.5 times-smaller diameter CNTs having bent, and
entangled morphologies. A powder metallurgy based synthesis technique was employed in
this study. The authors utilized a relatively harsh mechanical milling process in the dispersion
of CNTs within the aluminum matrix. This was followed by a cold compaction and hot
extrusion processes reaching a final dense composite part that is suitable for consecutive
testing and characterization methods. The authors indicated that CNTs morphology and

diameter significantly affect both of the processing and properties of AI-CNT composites.

Small diameter bent and entangled CNTs are found difficult to disperse in the structure
especially with high CNT fractions due to their large tendency of agglomeration. They are
found to exhibit high interfacial contact areas with the matrix which boost carbides formation
at low CNT fractions. They were also reported to minimize cold welding between aluminum
matrix particles during milling and to be highly susceptible to interactions with the formed
aluminum carbides, nano-size oxide particles, and carbon nano-rods existing in the matrix

structure.

On the contrary, large diameter straight and stiff CNTs were easier to disperse even with
high CNT fractions without significant carbides intervention. They are found to retain their
tubular structures intact after processing which give rise to enhancements in the composite
mechanical properties. The authors illustrated that variation in the mechanical properties of
AI-CNT composites incorporating the same volume fraction of these CNT is a direct

consequence for their morphological and diameter dissimilarities.
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2.1.2. Conventional Powder metallurgical methods
(Choi et al., 2008) investigated the effectiveness of CNTs as reinforcements for the

aluminum matrix, this included initial washing out of amorphous-carbon particles from the
CNT charge using a mixture of acids, followed by synthesis of pure aluminum and Al-4 vol.%
CNT composites using conventional mechanical milling, powder compaction, and hot
extrusion processes. The authors reported an enhancement in composite strength and
Young's modulus of the composite. The authors reported a modulus of 104 GPa for Al-4 vol.%
CNT compared to 70 GPa for processed aluminum and attributed this enhancement to the
combined effect of reinforcement, that were uniformly dispersed and aligned as observed by
TEM images, and the structural refinement associated with processing. They also reported a
good match with the results obtained by the rule of mixtures of discontinuous fiber

composites.

Figure 1 TEM images of the hot extruded Al-4 vol.% CNT showing individually dispersed CNTs (arrows).(Choi et al.,
2008)

2.1.3. Synthesis of AI-CNT composites using the mechanical milling
process
(Choi et al., 2009) utilized the mechanical milling technique to successfully disperse

individual CNTs within aluminum powders. The technique was reported to considerably
eliminate the formation of interfacial compounds in the bulk scale when combined with the
appropriate powder consolidation method and thus maintain the structural order of the CNTs.
(Choi et al., 2009) produced four different compositions of the AI-CNT composite (1.5, 3, 4.5,

and 6 vol.% CNT) in addition to pure aluminum to investigate the impact on the mechanical
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properties of the composite. Their procedure included an initial purification treatment of the
CNTs using mixtures of acids to eliminate impurities and amorphous carbon particles. They
used an attritor type ball mill rotating at 500 rpm for a milling period of 6 hours at which CNTs
were completely embedded within the aluminum particles as confirmed by the SEM images.
Stainless steel vial and balls of 5 mm in diameter were used to produce the composite
powders. They used a ball-to-powder weight ratio of 15:1 and 1 wt.% stearic acid as the
process control agent in an inert atmosphere. They provided control over the milling process
temperature using a circulating water system. A hot rolling consolidation process was used to
produce a fully dense composite. Canned milled composite powders were hot-rolled at 480 C
for 27 rolling passes with an overall reduction in area of 12%. Thin sheet specimens were

obtained on which several testing and characterization methods were performed.

(Choi et al., 2009) demonstrated that mechanical milling by the conditions mentioned
above causes infiltration of some aluminum atoms to partially fill the CNTs embedded in the
structure changing their aspect ratios, i.e. enlarging tube diameters and decreasing lengths.
(Choi et al., 2009) were able to prove this using HETEM images and Raman spectrographs
where the increase in inter-atomic distances of carbon atoms in the CNT structures causes
changes in vibrational excitation energies of CNT molecules resulting in substantial peak shift
on the Raman spectra, as shown in Figure 2, relative to the initial CNTs structures. The hot
rolling process was extremely advantageous in orienting CNTs within the material parallel to

the rolling direction and hence maximized the structure load bearing capacity.
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Figure 2 Raman spectra of starting CNTs and Al-4.5 vol.% CNT composite showing peak shifts resulting from CNT
structural changes.(Choi et al., 2009)

The mechanical properties reported by (Choi et al., 2009) confirmed the effectiveness of

the involved processing technique in strengthening and toughening of AlI-CNT composites.
They reported a yield strength and fracture toughness of 610 MPa and 60.79 MPa\/E for the

Al-4.5 vol.% CNT condition, compared to 262 MPa and 33.22 MPa\/E for pure aluminum

prepared with the same procedure, respectively.

(Morsi et al., 2010c) reported that conventional mechanical milling processes strain
hardens milled composite powders which would affect further processing steps and would

reflect on the final properties

2.1.1. Synthesis of AI-CNT composites by the roll bonding technique
(Lahiri et al., 2009) have reported the fabrication of AI-CNTs composites of 2, 7.5, 9.5

vol.% CNTs by the roll bonding method. The authors have reported the effectiveness of the
technique in homogenous dispersion of CNTs within the Al matrix for CNT concentrations up
to 2 vol.%, also showed that CNT agglomeration took place at higher volume fractions of 7.5
9.5 vol.%. The authors have reported a dual strengthening role of CNTs that was connected to
their uniform dispersion in the composite. They have indicated that uniformly dispersed CNTs
in the composite at low CNT fractions of 2 vol.% improve the homogenous behavior of the
composite structure which reflects higher resistance to plastic deformation at low stresses,

e.g. higher modulus of elasticity. They have also figured out that CNT precipitates at higher
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volume fractions have lessen this uniform response of the structure, which led to a lower
modulus and higher tensile strength. The authors reported an ultimate increase in composite
modulus up to 59% at 2 vol. CNTs and an increase in tensile strength up to 250% in 9.5 vol.%

CNTs.(Lahiri et al., 2009)

2.1.2. Spark plasma Sintering/Extrusion synthesis of AI-CNT
composites
The SPS technique has gathered a lot of researcher's attention due to its advantages of

high densification, fast and uniform processing. A number of studies were concerned with the
spark plasma sintering techniques featuring Al-CNT composites and others used it combined
with a complementary densification process.(Morsi et al., 2010a, Morsi et al., 2010c, Morsi et

al., 2010b)

(Kwon et al., 2010) have adopted the use of a combination of spark plasma sintering and
hot extrusion processes in producing AI-CNT composites from their raw constituents. They
reported high strength enhancement compared to starting aluminum while maintaining the
composite ductility. They attributed such outstanding scheme of properties enhancement to
the presence of CNTs at the boundaries and to the alignment of CNTs during the extrusion
process as well as to the effective load transfer between the CNTs and the matrix caused by

the formation of Aluminum carbides at the interface.

(Kwon et al., 2010) used CNTs having average diameter and length of 20 nm and 30 um,

respectively, in addition to 99.5% pure aluminum powders having average particle size of 15

um . They have adopted a precursor dispersion method (Kwon et al., 2009) to mix Al and CNT

in the form of dry powders. This included mixing of 1 vol.% CNT and 99 vol.% aluminum
powders with natural rubber in a solution of benzene and consequently heating the mixture
for 2 hours at 500 C in an argon atmosphere. This was believed to achieve uniform dispersion
of CNTs on aluminum powders surfaces after treatment which was then confirmed by SEM
investigations. They also reported that the aluminum particles retained their average particle
size and spherical morphologies while CNTs were observed a little bit shorter than the starting

length.

(Kwon et al., 2010) exposed the AI-CNT mixture after treatment to spark plasma sintering

process forming a bulk compact using 50 MPa pressure and variable temperatures of 480, 500,

Literature review || 24

www.manaraa.com



560, and 600 C with a constant heating rate and holding time of 40 C/min and 20 minutes,
respectively. A successive hot extrusion process at 400C and extrusion ratio of 20:1 was
employed to further enhance densification and CNT alignment. They reported some important
findings for sintered and extruded AI-CNT composite parts at this stage and this included that
aligned CNT reinforcements uniformly reside at the grain boundaries of the structure and
minute interfacial defects resulting from chemical reactions between aluminum and defective
CNTs were observed, also that grain growth of composite particles was neither observed in
sintered parts nor in the extruded parts. They have attributed this to the pinning effect

associated with high heating rate (40 C/min) during both processes.

(Kwon et al., 2010) reported a good enhancement in mechanical properties compared to
bulk aluminum processed using the same procedure, such that a maximum tensile strength of
207.5 MPa and maximum elongation of 21% were achieved by the Al- 1vol.% CNT composite
sintered at 480 C and that for processed aluminum were 52 MPa and 19.5%, respectively. The
authors attributed the enhancement in strength to the formation of Al,C; at the interface that
ameliorate stress transfer between the matrix and the reinforcements. They presented SEM
fractographs shown in Figure 3 where a highly dimpled structure (the mark of high ductility) is

observable, bridging and few broken CNTs were also distinguished.

CNTs OW

Al particle Broken CNT

-

Figure 3 FESEM fractographs of the extruded Al-1 vol.% CNT composites after tension test showing (a )low
magnification where black arrows are indicative of CNT bridging, and (b) higher magnification where the white
arrows refer to broken CNT.(Kwon et al., 2010)

In a similar investigation, (Kwon et al., 2009) used exactly the same precursor treatment,
the spark plasma sintering, and the hot extrusion procedure to produce Al-5 vol.% CNT

composites. The author reported an enhancement in Ultimate strength and Vickers macro
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hardness of AI-CNT composite compared to those of pure aluminum processed the same way.
The reported properties were 198 MPa and 52 HV for the ultimate strength and macro
hardness properties, respectively, for the Al-5 vol.% CNT composite, and 110 MPa and 22 HV

for pure aluminum.

(Morsi et al., 2010c) used the mechanical milling process as a good dispersion method of
CNTs into aluminum matrix in conjunction with spark plasma extrusion process to produce Al-
2.5 wt.% CNT, they demonstrated the advantage of using SPE compared to earlier SPS as
allowing the production of powder based materials with extended-geometries and bulk
deformation under the influence of direct electric current. The authors used aluminum
powders with 45 um average particle size and CNTs having 30-50 nm in average diameter and

10-20 um in length. They utilized milling conditions of BPR 5:1, methanol PCA 1.5 wt.%,

milling time of 60min and 90min for the pure aluminum and the Al-2.5wt.% CNT compositions,
respectively. A cold compaction step was involved followed by the SPE process at a
temperature of 433 C and ram speeds of 5.6 and 6.3 mm/s for pure aluminum and Al-2.5 wt.%
CNT compositions, respectively. The authors reported successful extrusion of the pure and
composite conditions with no evidence of carbides formation. They also demonstrated the
effect of CNT in providing internal lubrication during SPE. The reported mechanical properties
showed an enhancement in Al-2.5 wt.% CNT composite compressive strength and Vickers
hardness of 415.3 MPa and 99.1 HV compared to those of pure aluminum prepared the same
way of 377.2 MPa and 74.7 HV, respectively. The authors have attributed these enhancements
to the dual effects of reinforcement and reduced grain size of aluminum matrix due to

processing.

In the same year of 2010, (Morsi et al., 2010a) published the results of their investigation
on two compositions of AI-CNT composites (Al-2.5 wt.% CNT & Al-5 wt.% CNT processed by a
combination of mechanical milling and the spark plasma sintering technique. Generally they
used the same starting materials and milling parameters as mentioned in the previous
paragraph, in addition to those of the SPS process which was conducted using a pressure of
250 MPa at 380°C and 324°C for the 2.5 wt.% CNT and the 5 wt.% CNT conditions,
respectively. The authors reported the effectiveness of the mechanical milling process in
dispersion of CNTs within the aluminum matrix and they highlighted that the PCA has a critical

effect on the size and morphology of milled composite powders in conjunction with the
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percentage CNT loading and milling time, such that high CNT loadings favors the fracturing
phase of the milling process and reduces particle size, incidentally increased milling time
would consume the added PCA and increase the particle size back. The reported micro
hardness for Al- 2.5 wt.% CNT and Al-5 wt.% CNT were 91.3 HV and 107.3 HV, respectively,
which is close to that reported for same Al- 2.5 wt.% CNT produced by the spark plasma

extrusion process.

2.1.3. High pressure torsion synthesis of AlI-CNT composites
(Tokunaga et al., 2008) have utilized the high pressure torsion (HPT) process to synthesize

AI-CNT composites as shown in Figure 4. The authors used a mixture of high purity aluminum
powder and 5 wt.% SWCNTs of 1-2 nm in diameter in the synthesize process. The HPT process
showed high potential in producing high density disks of AI-CNT composites with no
introduced heating. Refinement in grain size was observed down to 500 nm for HPT processed
aluminum compared to 1200 nm for bulk aluminum. The existence of CNTs has shown to
magnify the refinement effect down to 100 nm. Significant increases in composite hardness
up to 76 HV and in the composite strength to more than 200 MPa were recorded. The
hardness of the composite is found higher at the compact disk edges and decreases toward
the disk center. The authors attributed this to an odd distribution of strains induced by the

HPT process such that a steady state condition has not yet reached. (Tokunaga et al., 2008)
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Figure 4 Schematic representation of the HPT process.(Tokunaga et al., 2008)

2.1.4. Emphasis on dual matrix Al-CNT composites
(Morsi et al., 2010b, Esawi et al., 2012) have investigated both single and dual matrix Al-

CNT composites. (Morsi et al., 2010b) were interested to identify differences in structural

performance between single matrix and dual matrix composites. The authors demonstrated
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the structural differences between single and dual matrix composites in terms of the
geometry and dispersion of the reinforcements. They used a controlled atmosphere ball
milling process to produce Al-2.5 wt.% CNT composite powders. Cold compaction and spark
plasma extrusion processes were employed in consolidation of milled Al, single-, and dual-
matrix composite powders. The ram speed of the SPE process was set to 6.3 mm/s and
extrusion temperature was varied to identify the optimum extrusion temperature that
minimizes carbide formation. The authors proved the effectiveness of the SPE process in
producing AI-CNT composites both single and dual matrix with no significant formation of
carbides. The authors also demonstrated that dual matrix AI-CNT composites can be spark
plasma extruded with lower pressure requirements than that of single matrix composites and
they attributed this to the added soft material. The dual matrix AI-CNT composite was
reported to have lower compressive strength than their single matrix counterparts and also
lower than milled Al conditions. On the other hand, dual matrix composites showed an

enhanced ductile behavior.(Morsi et al., 2010b)
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Figure 5 Pressure versus ram displacement of the SPE process showing the dual matrix effect in lowering pressure
requirements.(Morsi et al., 2010b)

2.2. Strengthening in AI-CNT composites
The interactions between CNTs and the aluminum matrix have been intensively

investigated in several investigations (George et al., 2005, Choi et al., 2008, Kwon et al., 2010,
Choi et al., 2009, Bakshi and Agarwal, 2011, Ci et al., 2006, Pérez-Bustamante et al., 2009,

Balani et al., 2007) aiming to maximize the potential of CNTs as composite reinforcements.
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Possible strengthening mechanisms of AI-CNT composites have been examined and correlated

to the measured experimental results of the composite properties.(George et al., 2005)

(Bakshi and Agarwal, 2011) have analyzed the factors affecting strengthening of AI-CNT
composites and the possible efforts to maximize the advantage form the superior properties
of CNTs. The authors demonstrated three main aspects to affect strengthening of the AI-CNTs
composites. These are the dispersion of CNTs within the matrix material, the structural
deformation during processing, and the interfacial interactions between the matrix and the
reinforcements. The authors have showed that different composite processing techniques
greatly affect the structure of the reinforcements, for example, they reported that processes
such as ball milling, and hot extrusion break up CNTs into smaller length sections minimizing
their aspect ratios, and hence reducing their strengthening capacity. The authors have claimed
that the intense deformation accompanying processing, despite of its effect in damaging the
CNT structure, it is useful in disintegration of CNT clusters and in the preferential alignment of
individual CNTs within the structure. They also concluded that the higher the deformation the
stronger the contact between the Aluminum and CNTs and the better the load transfer to
CNTs. The authors demonstrated that AI-CNT interactions are necessary for a successful load
sharing between the matrix and the reinforcements and that the characteristics of the
interfacial region between the Al matrix and CNT reinforcements are significantly important.
They also pointed out that the strengthening effect observed in AI-CNT composites still far
below what have expected based on the superior properties of CNTs and they attributed this
to the damage to CNTs tubular structures during processing as well weak interfacial bonding
between the matrix and the reinforcements. The authors demonstrated that the rule of
mixture predictions of the composite strength and modulus is efficient up to 2 vol.%

CNTs.(Bakshi and Agarwal, 2011)

(George et al., 2005) have addressed three relevant strengthening mechanisms namely:
Thermal mismatch, Orowan looping, and Shear lag model, that could be operable for the case
of AI-CNT composites and asserted their theoretical predictions of the composite properties,
in terms of strength and modulus of elasticity, with those experimentally measured. The
authors utilized the mechanical milling process with soft conditions in producing Al-0.5 & 2
vol.% CNTs and Al-1 & 2 vol.% SWCNTs composites in the form of fine powders which were

then consolidated using conventional powder metallurgy processes into suitable testing
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components. The authors highlighted their speculations concerning each of the strengthening

mechanisms as follows:

Thermal mismatch
(George et al., 2005) claimed strengthening in AI-CNT composites to be resulting from

punching of internal dislocations at the AI/CNT interface leading to work hardening of the
matrix. This was attributed to a significant mismatch between matrix and reinforcements
coefficients of thermal expansion, that for aluminum is 23.6x10°K"and for CNTs: 10°K™.
The authors figured out that the density of generated dislocations at the interface is
dependent on the surface area of the reinforcements. Since CNTs have very high surface areas
thus higher density of dislocation would be achieved which leads to increased strengthening.
The reported prediction of incremental strength based on this model is given in Equation 1

and Equation 2.(George et al., 2005)
Ac=axuxp?? xb
Equation 1

and

p=10xAxe/(bxt(1-A))

Equation 2

Where a is a constant equals 1.25, w is the modulus of rigidity of matrix material (for Al

is2.64x10" N/m’), pis the dislocation density, and b is the Burgers vector.

Orowan Looping
(George et al., 2005) attributed strengthening to the hindering of internal dislocations

motion by the CNTs existing within the composite structure. CNTs are believed to enforce a
back stress which prevents further dislocation migration in the material and causes the
material to strengthen. This strengthening mechanism showed high significance in metal
matrix composites where reinforcements are very fine and inter-particle spacing is small. The
incremental shear strength that could be predicted by this strengthening mechanism could be

calculated from Equation 3.
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At =K xubA"? /rxIn(2r/r,)

Equation 3

Where K is a constant depending on type of dislocations (0.093 for edge dislocations

and 0.14 for screw dislocations), r, is the core radius of dislocation (3.5x107), b is the
Burgers vector, w is the modulus of rigidity of matrix material (for Al'is 2.64x10'"°N/m?, and

A is the volume equivalent radius for the reinforcement (1.593x107'for CNTs and
7.087 x10~° for SWCNT)

The Shear lag model
This model assigned the load transfer job between the matrix and the reinforcement in

AI-CNT composites to the interfacial shear stress. This in fact better incorporates the high
properties of CNTs as a source for strengthening. The model assumes good wetting properties
between the matrix and the reinforcement for effective stress transfer while this is not the
case in AI-CNT composites in which wetting is limited because of the significant difference
between the surface tension properties of both constituents (for Al is 865 mN/m and that
reported for CNTs range from 100-200 mN/m). The Young's modulus of the composite based

on the shear lag prediction model can be calculated through Equation 4 and Equation 5.
E, =A><Ef(1—tanh(ns)/(ns))+(1—A)xEm
Equation 4
and
n= (2Em /(Ef x(1+ym)><1n(l/A)))(1/2)

Equation 5

Where E.is the Young's modulus of the reinforcement material, E_is the Young's

modulus of the matrix material, s is the aspect ratio of the reinforcement (: 100 for MWCNTSs

and up to : 1000 for SWCNTs), Ais the reinforcement volume fraction, and vy _is the

Poisson's ratio of the matrix material (0.3 for Al)
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According to (George et al., 2005), an enhancement in material strength and Young's
modulus took place relative to those of processed aluminum. The correlation between the
measured properties and those predicted using different mechanisms mentioned above
showed that, for the AI-CNT composites, the shear lag and the Orowan looping models best
match the experimentally measured Young's modulus and yield strength of the composite,
respectively. As for the AI-SWCNT composites the authors reported a relatively good
correlation between the measured Young's modulus and the one predicted using the shear lag
model. The authors also implied that the observed strengthening might also be due to

synergistic effect of a combination of the mechanisms mentioned above.(George et al., 2005)

2.3. Mechanical properties of Al-CNT composites
(Esawi et al., 2010) have investigated the effect of CNT loading on the mechanical

behavior of AI-CNT composites. the authors have used 99.7% pure- 200 mesh Al powder in
addition to 95% pure CNTs having an average diameter in the range of 30-50 nm, an average
length of 10-20 um, and an aspect ratio of approximately 375. Five composite compositions
were produced to examine their impacts on the mechanical properties of the composites. 0.5,
1, 2, and 5 wt.% CNT in addition to pure aluminum were investigated. The processing involved
dispersion of CNTs with the respective composition into aluminum matrix using the high
energy ball milling process. Milled composite powders were consolidated using conventional
compaction and hot extrusion processes. Mechanical properties were then examined using
different testing methods. The authors reported that increasing CNT contents in the matrix
significantly increases the material strength up to 2 wt.% CNT at which more than 50%
enhancement is achieved. Further increase in CNT content, produced slight enhancement and
was considered not effective. The authors reported a similar behavior for the Young's modulus
of the composite showing a maximum improvement of more than 23% at a CNT wt.% fraction
of 2wt.% further increase in CNT content over 2wt.% have led to slight deterioration in the
Young's modulus. The authors have reported that the milling process parameters in

conjunction with the CNT greatly influence the mechanical properties of the composite.

(Bakshi and Agarwal, 2011) have provided a piece of the art survey of the published
mechanical properties of AI-CNT composites as shown Table 1. The tabulated records show
characteristic enhancements in the composite properties due to the dispersion of CNT in the

structure. Poor dispersion of CNTs in the matrix and the formation of excessive amounts of
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aluminum carbides in addition to the deterioration in composite ductility comprise the most

critical limitations of AI-CNT composites.

The mechanical properties of AI-CNT composites reported by different studies as shown
in Table 1 display good enhancement in composite strength and modulus up to 620 MPa and
110 GPa, respectively, however, the advantage from the superior mechanical properties of
CNTs was not fully incorporated. Nonetheless, the reported composites were suffering severe
reduction in ductility down to 2.2 % due to both the reinforcements and the processing
techniques involved. These have motivated the current research to magnify the advantage
from the high CNT properties using better processing parameters compared to those

previously reported as well as to manipulate the composites ductility issue.
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